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Abstract— One of the fundamental problems of Algebraic topology is to calculate Homotopy groups of spheres that is concerned as a goal 
of 21st century. Trivial homotopy groups of spheres have been calculated convincingly. But computation of non-trivial homotopy groups of 
spheres is found very complex and difficult. To understand the complexity, we have reviewed computation of the trivial homotopy groups 
and then looked at the complexity again to draw some meaningful insights. We found that homotopy groups have not been defined 
properly yet for non-trivial cases and have no useful classification of it. Some proofs have been rewritten to ensure their mathematical 
foundations. 
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  1  INTRODUCTION 
 

ne of the fundamental problems in algebraic topology [19] 
and the ultimate goal of 21st century is to calculate 

homotopy group of sphere [8]. Computation of non-trivial 
homotopy groups of k-spheres is complex and difficult           
[2, 7, 14], so it could not be studied in a general case study [7]. 
Also, new mathematics has been generated concerning the 
computation of non-trivial homotopy groups which is another 
motivation to this investigation.  
 
There are some studies have been done concerning homotopy 
groups of spheres. After some ground breaking works of 
computing homotopy groups of sphere, such as [11, 13, 22], 
development of this field of study concentrated on 
calculations of non-trivial homotopy groups of spheres. Most 
of the studies have been conducted concerning the stable 
homotopy groups of spheres [6, 9, 18, 23]. 
 
Homotopy groups have been reinvestigated for 𝑖 ≥ 2 in [21] 
by giving alternative proof of Gray’s results. Mark 
Mahowald’s contribution to compute homotopy groups of 
spheres have been reviewed in [12]. Besides these review 
works, there are very few recent literatures on calculating 
homotopy groups of spheres. Some unpublished lecture notes 
[2, 3, 15, 17, 20] have been found on this topic. A thesis work 

[10] has been performed recently proofing Pontrygin’s 
theorem. Homotopy group of spheres have been recently 
investigated concerning Hopf fibration and Villarceau circles 
in [5].  
 
In this article, we have reviewed calculation of homotopy 
groups of k-spheres with a goal to understand problems of 
computing non-trivial homotopy groups of k- spheres. Since 
the complexity of calculating non-trivial homotopy group of 
spheres has not removed yet, we need to understand existing 
knowledge of it in depth. 
 
2   BACKGROUND AND METHODOLOGY 
2.1 Fundamental group: A map 𝑓 ∶ 𝑋 → 𝑌 said to be 
homotopic to a map 𝑔 ∶ 𝑋 → 𝑌 if there exists a map 𝐹: 𝑋 × 𝐼 →
𝑌 such that 𝐹(𝑥, 0) = 𝑓(𝑥) and 𝐹(𝑥, 1) = 𝑔(𝑥) for 𝑥 ∈ 𝑋. The 
map 𝐹 is called a homotopy deforms 𝑓 to 𝑔. It is denoted by 
𝐹: 𝑓≃𝑔. If 𝑓 and 𝑔 are two paths in 𝑋 having the same initial 
point 𝑥  and the final point 𝑥 , then the homotopy 𝐹 deforms 𝑓 
to 𝑔 together with two conditions 𝐹(0, 𝑡) = 𝑥  and 𝐹(0, 𝑡) =  𝑥  
for 𝑡 ∈ 𝐼. In that case, 𝐹 is called a path homotopy. The relation  
“≃ ” is an equivalence relation. The homotopy class of 𝑓 is 
denoted by [𝑓] is the equivalence class under the relation ≃. 
Let 𝑓 be a path in  𝑋 from 𝑥  to 𝑥 , and let 𝑔 be a path in 𝑋 
from 𝑥   to 𝑥  . The product 𝑓 ∗ 𝑔 is also a path from 𝑥  to 𝑥  
defined by 

(𝑓 ∗ 𝑔)(𝑠) =
𝑓(2𝑠)           𝑓𝑜𝑟  𝑠 ∈ [0, ½]

 𝑔(2𝑠 − 1)    𝑓𝑜𝑟   𝑠 ∈ [½, 1]
 

This product gives an operation defined by [𝑓] ∗ [𝑔] = [𝑓 ∗ 𝑔] 
in the set of path homotopy classes. This operation satisfies the 
properties, which is similar to the axioms for a group. One 
difference from the properties of a group is that [𝑓] ∗ [𝑔] is not 
defined for every pair of classes, but only for those pairs 
[𝑓], [𝑔] for which 𝑓(1)  =  𝑔(0). The following theorem shown 
that this operation satisfies associativity, identity and inverse 
law. 
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2.2 Theorem: 
Let  𝑓, 𝑔 and ℎ be three paths in a space 𝑋 with 𝑓(0) = 𝑥 , 
𝑓(1) = 𝑥 = 𝑔(0) and 𝑔(1) = 𝑥 = ℎ(0), then 

(1)  Associativity: [𝑓] ∗ ([𝑔] ∗ [ℎ])= ([𝑓] ∗ [𝑔]) ∗ [ℎ]. 
(2) Identity: If 𝑒 : 𝐼 → 𝑋 denote the constant path in 𝑋 at 

𝑥 ∈ 𝑋. Then [𝑓] ∗ 𝑒 = [𝑓] and  𝑒 ∗ [𝑓] = [𝑓]. 
(3) Inverse: Let𝑓(̅𝑠) = 𝑓(1 − 𝑠) for all 𝑠 ∈ 𝑋. Then 𝑓 ̅also a 

path in 𝑋 from 𝑥  to 𝑥  with [𝑓] ∗ [𝑓]̅ = [𝑒 ] and 
[𝑓]̅ ∗ [𝑓] = [𝑒 ]. Here 𝑓 ̅is called the reverse of 𝑓. 

Proof: To prove the problem, we shall use the following two 
conditions. 

i) If 𝑘: 𝑋 → 𝑌 is a continuous map, and if 𝐹 is a path 
homotopy in 𝑋 between the paths 𝑓and 𝑓′, then 
𝑘 ○ 𝐹 is a path homotopy in 𝑌 between the paths 
𝑘 ○ 𝑓 and 𝑘 ○ 𝑓′.  

ii) if 𝑘: 𝑋 → 𝑌 is a continuous map and if 𝑓 and 𝑔 are 
path in 𝑋 with 𝑓(1) = 𝑔(0). Then 

𝑘 ○ (𝑓 ∗ 𝑔) = (𝑘 ○ 𝑓) ∗ (𝑘 ○ 𝑔). 
First, we prove (2). Let 𝑒  be the constant path in 𝐼 at 0, and let 
𝑖  be the identity map in 𝐼, which is a path in 𝐼. then the 
composition 𝑒 ∗ 𝑖 is also a path in 𝐼 from 0 to 1.  
Since 𝐼 is convex, there exists a path homotopy 𝐺 between 𝑖 
and  𝑒 ∗ 𝑖. From condition (i), 𝑓 ○ 𝐺 is a path homotopy 
between the paths 𝑓 ○ 𝑖 and 𝑓 ○ (𝑒 ∗ 𝑖). But 𝑓 ○ 𝑖 = 𝑓 and from 
the condition (ii), 𝑓 ○ (𝑒 ∗ 𝑖) = (𝑓 ○ 𝑒 ) ∗ (𝑓 ○ 𝑖) =  𝑒 ∗ 𝑖. 
Therefore, [𝑒 ] ∗ [𝑓] = [𝑓]. Similarly, [𝑓] ∗ [𝑒 ] = [𝑓].  
To prove (3), Let  𝚤 ̅ ∶ 𝐼 → 𝐼 be the reverse of 𝑖.  
i.e., 𝚤(̅𝑡)=1-t, which is a path in 𝐼 from 1 to 0. Then the product  
𝑖 ∗ 𝚤 ̅is a path the in 𝐼 that begins and ends at 0. 
Since 𝐼 is convex, there exists a path homotopy 𝐻 between the 
paths 𝑖 ∗ 𝚤 ̅and 𝑒 . Then 𝑓 ○ 𝐻 is a path homotopy between the 
paths 𝑓 ○ 𝑒  =𝑒  and ○ (𝑖 ∗ 𝚤)̅ = (𝑓 ○ 𝑖) ∗ (𝑓 ○ 𝚤)̅ = 𝑓 ∗ 𝑓 ̅ . Thus, 
[𝑓] ∗ 𝑓̅ = [𝑒 ]. Similarly, we can prove that 𝑓̅ ∗ [𝑓] = [𝑒 ]. 
To prove (1), first we define the product 𝑓 ∗ 𝑔 in another way. 
Let 𝑝: [𝑎, 𝑏] → [𝑐, 𝑑] be a map defined by 𝑝(𝑥) = 𝑚𝑥 + 𝑐, where 
𝑚, 𝑐 ∈ ℝ be such that 𝑝(𝑎) = 𝑐 and 𝑝(𝑏) = 𝑑. The map p is 
continuous, it called the positive linear map from the interval 
[𝑎, 𝑏] onto the interval [𝑐, 𝑑], such map is unique. The inverse 
of 𝑝 is also a positive linear map, and so is the composite of 
two such maps. 
If 𝑝 is the positive linear map from [0, ½] onto  [0,1] and if 𝑞 is 
the positive linear map from [½, 1] onto [0,1], then define 

(𝑓 ∗ 𝑔)𝑎(𝑠) =
𝑓 ○ 𝑝    𝑓𝑜𝑟  𝑠 ∈ [0, ½]

𝑔 ○ 𝑞    𝑓𝑜𝑟  𝑠 ∈ [½, 1]
   for  𝑠 ∈ [0,1] 

Since the composite of two continuous maps is also 
continuous, 𝑓 ○ 𝑝 and 𝑔 ○ 𝑞 are continuous. The continuity of 
𝑓 ∗ 𝑔 comes from the pasting lemma. 
Now we prove (1). Choose 𝑎, 𝑏 ∈ [0,1] such that 0 < 𝑎 < 𝑏 < 1. 
If 𝑝, 𝑞  𝑎𝑛𝑑 𝑟 are the positive linear maps defined from the 
different domains [0, 𝑎], [𝑎, 𝑏] and [𝑏, 1] respectively onto [0,1]. 
We define 𝑘 , : 𝐼 → 𝑋 by 

𝑘 , (𝑠) =

 𝑓 ○ 𝑝   𝑓𝑜𝑟  𝑠 ∈ [0, 𝑎]

𝑔 ○ 𝑞   𝑓𝑜𝑟  𝑠 ∈ [𝑎, 𝑏]

ℎ ○ 𝑟   𝑓𝑜𝑟  𝑠 ∈ [𝑏, 1]
 for all 𝑠 ∈ [0,1]. 

Here 𝑘 ,  is continuous, and depend on the choice of 𝑎, 𝑏. 
Therefore, if we choose another pair 𝑐, 𝑑 ∈ [0,1] with 0 < 𝑐 <
𝑑 < 1, then 𝑘 ,  may not be equal to 𝑘 , . But we claim that 

they are homotopic. 
Let 𝑢 be the path in 𝐼 from 0 𝑡𝑜 1, made up by joining of the 
positive linear maps from the domains [0, 𝑎], [𝑎, 𝑏] and [𝑏, 1] 
onto [0, 𝑐], [𝑐, 𝑑] and [𝑑, 1] respectively. Indeed, 𝑘 , ○ 𝑢 = 𝑘 , . 
Since 𝐼 is convex, 𝑢 is homotopic to 𝑖, the identity map in 𝐼. If  
𝑈is a path homotopy between 𝑢 and 𝑖, then 𝑘 , ○ 𝑈 is a path 
homotopy between 𝑘 , ○ 𝑢 = 𝑘 ,  and 𝑘 , ○ 𝑖 = 𝑘 , . (by using 
condition (i)). Thus [𝑘 , ] = [𝑘 , ]. Finally, if we put 𝑎 = 1 2⁄ ,

and 𝑏 = 3 4⁄ , we see that 𝑘 ,  is equal to the product 𝑓 ∗ (𝑔 ∗

ℎ), and if we put 𝑐 = 1 4⁄  𝑎𝑛𝑑 𝑑 = 1 2⁄ , we see that 𝑘 ,  is 
equal to the product (𝑓 ∗ 𝑔) ∗ ℎ. This completes the proof. 
The set of path homotopy classes of 𝑋 don’t form a group 
under the operation ∗. To form a group choose a point 𝑥  in 𝑋, 
the set of all path-homotopy classes of the paths that begin 
and end at 𝑥  form a group under ∗. It is called the 
fundamental group of 𝑋 relative to the base point 𝑥 , it is 
denoted by 𝜋 (𝑋, 𝑥 ). A path-connected space𝑋 is said to be 
simply connected if 𝜋 (𝑋, 𝑥 ) is trivial for each 𝑥 ∈ 𝑋. 
 
2.3 Covering spaces: 
Let 𝑝: 𝐸 → 𝐵 be a continuous and surjective map. An open set 
𝑈 of 𝐵 is called evenly covered by 𝑝 if 

𝑝 (𝑈) =  𝑉  

where 𝑉 , 𝑠 are the disjoint open sets in E, and 𝑝 𝑉 ∶  𝑉 → 𝑈 is 

an isomorphism for each 𝛼. The collection {𝑉 } is called a 
partition of 𝑝 (𝑈) into slices. Note that if U is evenly covered 
by p then every subsets of U is evenly covered by p. If for 
every 𝑏 ∈ 𝐵 there is a neighborhood 𝑈 of  𝑏 which is evenly 
covered by p, then p is said to be a covering map, and the 
space 𝐸 is called a covering space of 𝐵. 
 
2.4 Example. The map 𝑝: ℝ → 𝑆  be define by  

𝑝(𝑥) = (𝑐𝑜𝑠2𝜋𝑥, 𝑠𝑖𝑛2𝜋𝑥) 
is a covering map. 
 
2.5 Lifting Properties: 
Let  𝑝: 𝐸 → 𝐵 be a map. If 𝑓 is a continuous map from a space 
X into B, a lifting of 𝑓 is a map 𝑓:̅ 𝑋 → 𝐸 such that  𝑝 ○ 𝑓̅ = 𝑓. 
Let 𝑝: 𝐸 → 𝐵 be a covering map. Choose 𝑒  for which 𝑝(𝑒 ) =

𝑏 . Then the map 𝜑: 𝜋 (𝐵, 𝑏 ) → 𝑝 (𝑏 ) definied by 
𝜑([𝑓]) = 𝑓(̅1)  for all [𝑓] ∈ 𝜋 (𝐵, 𝑏 ) 

is called the lifting correspondence induced by the covering 
map 𝑝. Where 𝑓 ̅is the unique lifting of 𝑓, which is a path in E 
with 𝑓(̅0) = 𝑒 . Since 𝑓 ̅ is unique, 𝜑 is well-defined. The 
correspondence 𝜑 depends on the choice of 𝑒 . 
 
2.6 Theorem: 
If  𝑝: 𝐸 → 𝐵 is a covering map with 𝑝(𝑒 ) = 𝑏 , and if 𝐸 is a 
path connected space, then the lifting correspondence 

𝜑: 𝜋 (𝐵, 𝑏 ) → 𝑝 (𝑏 ) 
is surjective. If 𝐸 is a simply connected space, then it is 
bijective [16]. 
 
2.7 Deformation retraction: 
A deformation retraction of a space X onto a subspace A is a 
family of maps 𝑓 : 𝑋 → 𝑋, 𝑡 ∈ 𝐼, such that 𝑓 = 𝑖 (the identity 
map), 𝑓 (𝑋) = 𝐴, and 𝑓 𝐴⁄ = 𝑖  for all 𝑡. The family 𝑓 should be 
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continuous in the sense that the associated map 𝑋 × 𝐼 → 𝑋, 
(𝑥, 𝑡) → 𝑓 (𝑥) is continuous. We say that 𝐴 is a 
deformationretract of 𝑋 if there exists a deformation retraction 
of 𝑋 onto 𝐴. 
A deformation retraction 𝑓 : 𝑋 → 𝑋 is a special case of the 
general notion of ahomotopy, which is simply any family of 
maps 𝑓 : 𝑋 → 𝑋, 𝑡 ∈ 𝐼, such that the associated map 𝐹: 𝑋 × 𝐼 →

𝑌given by 𝐹(𝑥, 𝑡) = 𝑓 (𝑥) is continuous. 
 
2.8 Relative homotopy: 
A homotopy 𝑓 : 𝑋 → 𝑋 that gives a deformation retraction of 
𝑋onto a subspace 𝐴 has the property that  𝑓 𝐴⁄ = 𝑖 for all t . In 
general, a homotopy  𝑓 : 𝑋 → 𝑌 whose restriction to a subspace 
𝐴 of 𝑋 is independent of t is called a homotopy relative to 𝐴, or 
more concisely, a homotopy rel 𝐴. Thus, a deformation 
retraction of 𝑋onto 𝐴 is a homotopy rel𝐴from the identity map 
of 𝑋 to a retraction of 𝑋 onto 𝐴. 
 
2.9 Homotopy equivalent: 
If a space 𝑋 deformation retracts onto a subspace 𝐴 via 
𝑓 : 𝑋 → 𝑋, then if 𝑟: 𝑋 → 𝐴 denotes the resulting retraction and 
𝑗: 𝐴 → 𝑋 the inclusion, we have 𝑟𝑗 ≃ 𝑖 and 𝑗𝑟 ≃ 𝑖, the latter 
homotopy being given by 𝑓 . Generalizing this situation, a 
map 𝑓: 𝑋 → 𝑌 is called a homotopy equivalence if there is a 
map 𝑔: 𝑌 → 𝑋 such that 𝑓𝑔 and 𝑔𝑓 are the identity maps of 𝑋 
and 𝑌 respectively. The spaces 𝑋 and 𝑌are said to be 
homotopy equivalent or to have the same homotopy type. 
 
2.10 Contractible space: 
A space is contractible if it is homotopy equivalent to a one-
point space. 
 
2.11 Homotopy Extension property: 
Given a map 𝑓: 𝑋 → 𝑌. A subspace 𝐴 of 𝑋 is said to have the 
homotopy extension property (HEP) in 𝑋 with respect to a 
space 𝑌, if every homotopy 

𝑓 : 𝐴 → 𝑌(0 ≤ 𝑡 ≤ 1), 
of the map 𝑓 𝐴⁄  has an extension 

𝑔 : 𝑋 → 𝑌(0 ≤ 𝑡 ≤ 1), 
such that 𝑔 = 𝑓, therefore 𝑔  is a homotopy of 𝑓. We also say 
that the pair (𝑋, 𝐴) satisfies the homotopy extension property. 
 
2.12 Homotopy Group: 
Let 𝑋 be a topological space with a base point 𝑥 . For 𝑛 ≥ 1 the 
𝑛𝑡ℎ homotopy group 𝜋 (𝑋, 𝑥 ) of 𝑋 is defined to be the 
homotopy classes of maps from the n-cube 𝐼  to 𝑋, which 
sends the faces 𝜕𝐼  to 𝑥 . Thus by an element of  𝜋 (𝑋, 𝑥 ) we 
mean a homotopy class of maps  

𝛼: (𝐼 , 𝜕𝐼 ) → (𝑋, 𝑥 ) 
Equivalently, an element of  𝜋 (𝑋, 𝑥 ) is a homotopy class of 
maps (𝑆 , 𝑝) → (𝑋, 𝑥 ) for some base point p. 
Two maps  𝛼, 𝛽: (𝐼 , 𝜕𝐼 ) → (𝑋, 𝑥 ) represent the same element 
of 𝜋 (𝑋, 𝑥 ) if and only if there is a homotopy 𝐻: 𝐼 × 𝐼 → 𝑋 
such that 

𝐻(−,0) = 𝛼,  𝐻(−,1) = 𝛽, and  𝐻(𝜕𝐼 , 𝐼) = 𝑥 . 
 
2.13 Proposition: 
For each pointed space (𝑋, 𝑥 ) and 𝑛 ≥ 1, the set 𝜋 (𝑋, 𝑥 ) is a 
group, the nth homotopy group of (𝑋, 𝑥 ). 

Proof: If 𝛼 and 𝛽 are two maps from 𝐼  to 𝑋, representing [𝛼] 
and [𝛽] in 𝜋 (𝑋, 𝑥 ), then the product [𝛼] ∗ [𝛽] is the homotopy 
class of the map 

(𝛼 ∗ 𝛽)(𝑡 , 𝑡 , … , 𝑡 ) =
𝛼(2𝑡 , 𝑡 , … , 𝑡 )           for 0 ≤ 𝑡 ≤ ½
𝛽(2𝑡 − 1, 𝑡 , … , 𝑡 )    for ½ ≤ 𝑡 ≤ 1

 

 
Notice that the definition agrees with the known group 
structure on the fundamental group for 𝑛 = 1. The proof that 
the group operation ∗ is well defined, associative, that the 
constant map 𝑒 : 𝐼 → 𝑋 represents the identity element, and 
that each element [𝛼] has an inverse represented by  

𝛼 (𝑡 , 𝑡 , … , 𝑡 ) = 𝛼(1 − 𝑡 , 𝑡 , … , 𝑡 ) 
is exactly the same as for  𝜋 (𝑋, 𝑥 ), and we leave the details. 
One may object that the definition of the group structure is a 
bit unnatural, because the first coordinate 𝑡  is given a 
preferred role in the definition of the group structure. We 
could also define a product as follows: 

(𝛼 ∗ 𝛽)(𝑡 , 𝑡 , … , 𝑡 ) =
𝛼(𝑡 , … ,2𝑡 , … , 𝑡 )           for 0 ≤ 𝑡 ≤ ½
𝛽(𝑡 , … , 2𝑡 − 1, … , 𝑡 )    for ½ ≤ 𝑡 ≤ 1

 

The explanation is that these two products induce the same 
operation on homotopy classes. The proof of this fact is given 
by the following observation (𝑙𝑒𝑚𝑚𝑎 2.14)  together with the 
so-called Eckmann-Hilton argument (proposition 2.15). 
 
2.14 Lemma: 
The operation ∗ distributes over the operation ∗  in the sense 
that 

(𝛼 ∗ 𝛽) ∗ (𝛾 ∗ 𝛿) = (𝛼 ∗ 𝛾) ∗ (𝛽 ∗ 𝛿). 
Proof: We only have to look at the case 𝑛 = 2; 𝑖 = 2. Then the 
expressions on the left and right correspond to the same 
subdivisions of the square so define identical maps. 
 
 
2.15 Proposition: (‘𝐸𝑐𝑘𝑚𝑎𝑛𝑛 − 𝐻𝑖𝑙𝑡𝑜𝑛 𝑡𝑟𝑖𝑐𝑘’) 
Let 𝑆 be a set with two associative operations ∗, ∘: 𝑆 × 𝑆 → 𝑆 
having a common unit 𝑒 ∈ 𝑆. Suppose  ∗ and ∘ distribute over 
each other, in the sense that 

(𝛼 ∗ 𝛽) ∘ (𝛾 ∗ 𝛿) = (𝛼 ∘ 𝛾) ∗ (𝛽 ∘ 𝛿) 
Then ∗ and ∘ coincide, and define a commutative operation on 
𝑆 [4]. 
Proof: Taking 𝛽 = 𝑒 = 𝛾 in the distributive law yields 
𝛼 ∘ 𝛿 = 𝛼 ∗ 𝛿 
Applying this proposition to ∗ and ∗  shows that these define 
the same operation on 𝜋 (𝑋, 𝑥 ) for 𝑛 ≥ 2. The proposition 
also shows: 
2.16 Corollary: 
The groups 𝜋 (𝑋, 𝑥 ) are abelian for 𝑛 ≥ 2. 
 
2.17 Proposition: 
For each map (𝑋, 𝑥 ) → (𝑌, 𝑦 ) the induced operation 
𝜋 (𝑋, 𝑥 ) → 𝜋 (𝑌, 𝑦 ) is a group homomorphism, defining a 
functor 𝜋 : 𝑻𝒐𝒑∗ → 𝑮𝒓𝒑∗. The functor 𝜋  is homotopy 
invariant. That is, 𝜋 (𝛼) = 𝜋 (𝛽) for homotopic maps 𝛼 ≃ 𝛽. 
Proof: Given a map 𝑓: (𝑋, 𝑥 ) → (𝑌, 𝑦 ). Let 𝛼 and 𝛽 be two 
maps from 𝐼  to 𝑋, representing [𝛼] and [𝛽] in 𝜋 (𝑋, 𝑥 ). The 
map 𝑓 induces a map 

𝑓∗: 𝜋 (𝑋, 𝑥 ) → 𝜋 (𝑌, 𝑦 ), 
𝑓 → 𝑓 ○ 𝛼. 

This makes 𝜋  a functor from pointed topological spaces to 
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groups. Moreover, if 𝐻 is a homotopy between 𝛼 and 𝛽, then 
clearly  𝑓 ○ 𝐻 is a homotopy between 𝑓 ○ 𝛼 and 𝑓 ○ 𝛽. Thus, 
the functor 𝜋  is homotopy invariant. Again (𝑓 ○ 𝛼) ∗
(𝑓 ○ 𝛽) = 𝑓 ○ (𝛼 ∗ 𝛽) implise 𝑓∗ is a homomorphism. 
 
2.18 CW complex: 
Let 𝑋 and 𝑌 be two topological spaces, and let 𝐴 be a subspace 
of  𝑌. If  𝑓: 𝐴 → 𝑌 is a continuous map, then the adjunction 
space (or attaching space) 𝑋 ∪ 𝑌 of 𝑋 with 𝑌  along 𝐴 with via 
𝑓 is the quotient space of the disjoint union of  𝑋 and 𝑌 under 
the identification 𝑎~𝑓(𝑎) for all 𝑎 ∈ 𝐴. Here the map 𝑓 is 
called an attaching map. 
A CW complex (cell complex) is a space 𝑋 constructed in the 
following way: 

(1) Beginning with a set 𝑋  of points, each point 
isconsidered as 0-cell. 

(2) Inductively, form the 𝑛-skeleton 𝑋  from 𝑋  by 
attaching 𝑛 −cells 𝑒  via maps 𝜑 : 𝑆 → 𝑋 . This 
means that 𝑋  is the quotient space of the disjoint 
union 𝑋 ⨆ 𝐷  of 𝑋  with a collection of 𝑛-disks 
𝐷  under the identifications 𝑥~𝜑 (𝑥) for 𝑥 ∈ 𝜕𝐷 . 
Thus as a set, 𝑋 = 𝑋 ⨆ 𝑒  where each 𝑒 = {𝑥 ∈
ℝ : ‖𝑥‖ < 1}, an open 𝑛-disk. 

(3) One can either stop this inductive process at a finite 
stage, setting 𝑋 = 𝑋  for some 𝑛 < ∞, or one can 
continue indefinitely, setting𝑋 =∪ 𝑋 . In the latter 
case 𝑋 is given the weak topology: A set 𝐴 ⊂ 𝑋 is open 
(or closed) if and only if 𝐴 ∩ 𝑋  is open (or closed) in 
𝑋  for each  𝑛. 

If  𝑋 = 𝑋  for some  𝑛, then 𝑋 is said to be finite-dimensional, 
and the smallest such 𝑛 is the dimension of 𝑋, the maximum 
dimension of cells of 𝑋. 
 
2.19 Example:  
The sphere 𝑆  has the structure of a cell complex with just two 
cells, 𝑒  and 𝑒 , the 𝑛 cell being attached by the constant map 
𝑆 → 𝑒 . This is equivalentto regarding 𝑆  as the quotient 
space 𝐷 𝜕𝐷⁄ . 
 
Let 𝑋 be a cell complex. Then for each cell 𝑒  in 𝑋 there is an 
extension 𝜙 : 𝐷 → 𝑋 of the attaching map 𝜑  for which the 
interior of 𝐷  is homeomorphic to 𝑒 , called the characteristic 
map of  𝑒 . We can take 𝜙  to be the composition 𝐷 ↪

𝑋 ⨆ 𝐷 → 𝑋 ↪ 𝑋 where the middle map is the quotient 
map defining 𝑋 . Being a composition of continuous map, 𝜙  
is continuous. 
 
A sub complex of a cell complex 𝐴 is a closed subspace 𝐴 ⊂ 𝑋 
that is a union of cells of X. Since 𝐴 is closed, the characteristic 
map of each cell in 𝐴 has image contained in 𝐴, and in 
particular the image of the attaching map of each cell in 𝐴 is 
contained in 𝐴, so 𝐴 is a cell complex in its own right. A pair 
(𝑋, 𝐴) consisting of a cell complex 𝑋 subcomplex  𝐴 will be 
called a CW pair. 
In a weak topology of a cell complex, a set is closed if and only 
if it meets the closure of each cell in a closed set. For if a set 
meets the closure of each cell in a closed set, it pulls back to a 
closed set under each characteristic map, hence is closed. 

 
2.20 Proposition: 
If (𝑋, 𝐴) is a CW pair, then 𝑋 × {0} ∪ 𝐴 × 𝐼 is a deformation 
retract of 𝑋 × 𝐼, hence (𝑋, 𝐴) has the homotopy extension 
property. 
 
2.21 Suspension:  
Let 𝑋 be a space, the quotient space 𝑋 × 1 is said to be a 
suspension of 𝑋 if the points 𝑋 × {0} and 𝑋 × {1} collapses to 
two different points. A suspension can be considered as a 
double cones 𝐶𝑋 = (𝑋 × 1)/(𝑋 × {0}). For a map 𝑓: 𝑋 → 𝑌, the 
suspension map 𝑆𝑓: 𝑆𝑋 → 𝑆𝑌, is the quotient map 𝑓 × 𝑖 : 𝑋 ×
𝐼 → 𝑌 × 𝐼, where 𝑖  is the identity map of  𝐼 = [0,1]. 
 

3  RESULTS AND DISCUSSION 

 
3.1 Fundamental group of  𝟏 −sphere, 𝛑𝟏(𝐒𝟏) ≅ ℤ 
 
3.1.1Theorem: 
The fundamental group of  𝑆  is an infinite cyclic group. 
Proof: To show that the fundamental group of  𝑆  is an infinite 
cyclic group we shall show that it is isomorphic to the additive 
group of integers. 
Consider the covering map 𝑝: ℝ → 𝑆  defined by 

p(x) = (cos 2𝜋x, sin2𝜋x). 
let 𝑏 = (1, 0). Then the inverse image 𝑝 (𝑏 ) is the set ℤ of all 
integers. Because ℝ is simply connected, the lifting 
correspondence  𝜑: 𝜋 (𝑆 , 𝑏 ) → ℤ is bijective. We have to 
prove that 𝜑 is a homomorphism. 
Let  [𝑓], [𝑔] ∈ 𝜋 (𝑆 , 𝑏 ). Let  𝑓 ̅𝑎𝑛𝑑 �̅� be the liftings of 𝑓 𝑎𝑛𝑑 𝑔 
respectively with the same initial point 0. If 𝑓(̅1) =
𝑚 and �̅�(1) = 𝑛,  then 𝜑([𝑓]) = 𝑚 and 𝜑([𝑔]) = 𝑛. Define  

�̅̅�(𝑠) = 𝑚 + �̅�(𝑠). 
Then  �̅̅� is a path in ℝ with �̅̅�(0) = 𝑛. Since for all 𝑥 ∈

ℝ𝑝(𝑚 + 𝑥) = 𝑝(𝑥), �̅̅� is a lifting of 𝑔. The product 𝑓̅ ∗ �̅̅� is also 
a path that begins at 0  and ends at �̅̅�(1) = 𝑚 + �̅�(1) = 𝑚 + 𝑛, 
and it is the lifting of  𝑓 ∗ 𝑔. Then 

𝜑([𝑓] ∗ [𝑔]) = 𝜑([𝑓 ∗ 𝑔]) 
= 𝑓̅ ∗ �̅̅� (1) 

= 𝑚 + 𝑛 
= 𝜑([𝑓]) + 𝜑([𝑔]). 

Thus, the proof is completed. 
 
3.2  Homotopy groups 𝛑𝐢(𝐒 ) for 𝒊 > 1 
 
3.2.1 Theorem: 
For 𝑖 > 1, π (𝑆 ) ≅ 0. 
Proof: For 𝑛 > 1, 𝐒  is simply connected, therefore 𝜋 (𝑆 ) ≅ 0. 
So any map 𝑓: 𝑆 → 𝑆  induces a map 𝑓∗: 𝜋 (𝑆 ) → 𝜋 (𝑆 ) 
which is equivalent to the unique map 0 → ℤ. The image of 𝑓∗ 
lies in the induced map of the covering map 𝑝: ℝ → 𝑆  as ℝ is 
the universal cover of 𝑆  and 𝜋 (ℝ) is trivial. If 𝑓:̅ 𝑆 → ℝ is the 
lifting of 𝑓 then 𝑓 ̅is nullhomotopic. Since ℝ is contractible, 𝑓 is 
also nullhomotopic. 
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3.3 Homotopy groups 𝛑𝐢(𝐒 ) for 𝒊 < 𝒏 
 
3.3.1 Cellular Approximation 
To prove 𝜋 (𝑆 ) = 0 for 𝑖 < 𝑛, we need to prove that every 
map 𝑆 → 𝑆  can be deformed in such a way that its image 
miss at least one point of 𝑆 , and with the fact that the 
complement of a point in 𝑆  is contractible to end the proof. 
First step ensures that there is no continuous map 𝑆 → 𝑆  
could be surjective when 𝑖 < 𝑛, but space-filling curves from 
point-set topology can be used to produce such maps. To 
validate this strategy, homotopies can be constructed 
removing these dimension-raising maps. 
 
3.3.2 Definition: 
If  𝑋 and 𝑌 are CW complexes, and 𝑓: 𝑋 → 𝑌 is a continuous 
map, then 𝑓 is said to be cellular, if  it takes the 𝑚 − skeleton of 
𝑋 to the 𝑛 − skeleton of  𝑌 for all 𝑚 and 𝑚 ≥ 𝑛. 
 
3.3.3 Theorem: (Cellular approximation theorem [1]) 
Every map 𝑓: 𝑋 → 𝑌 of CW complexes is homotopic to a 
cellular map. The homotopy can be taken to be stationary on 𝐴 
when 𝑓 is already cellular on a sub complex 𝐴 ⊂ 𝑋. 
 
3.3.4 Corollary: 
𝜋 (𝑆 ) = 0 for 𝑖 < 𝑛. 
 
Proof: 
Let usual CW structures of 𝑆  and 𝑆  with the 0 −cells as 
basepoints are given, then homotopy can be found for each 
basepoint-preserving map 𝑆 → 𝑆  which can be considered to 
be cellular fixing the basepoints. Therefore the map is constant 
for 𝑖 < 𝑛. 
 
3.4 Homotopy groups 𝛑𝐢(𝐒 ) for 𝒊 = 𝒏 
 
3.4.1 Theorem: (Excision for Homotopy Groups)  
Suppose X is a CW complex, A and B be two sub complexes 
such that A ∪ B = X and A ∩ B = C is non-empty. If (A, C) is 
m − connected and (B, C) is n − connected, then the inclusion 
map (A, C) → (B, C) induces an isomorphism for i < 𝑚 + 𝑛 and 
a epimorphism for i = m + n. 
 
3.4.2 Theorem:(Freudental Suspension Theorem)  
If X is a (n − 1) connected CW complex then the suspension 
map π (X) → π (SX)  is an isomorphism. 
Proof: From the definition of suspension one can considered 
that SX as a double cones C X and C X on X such that their 
union is SX and intersection is X × { }. From the long exact 
sequence of pair there are isomorphisms π (X) → π (C X, X) 
and π (X) → π (SX, C X) and (C X, X) is n −connected. By 
the preceding theorem the inclusion map induces an 
isomorphism   π (C X, X) ≅ π (SX, C X) composing these 
three isomorphism we have, π (X) ≅ π (SX). 
 
3.4.3 Corollary: π (S ) ≅ ℤ 
Proof: From the previous corollary we have π (S ) → π (S ) ≅

π (S ) ≅ ⋯ ⋯ ⋯, the first map is surjective since  π (S ) ≅ ℤ, 
π (S ) is a cyclic group. The long exact sequence of Homotopy 

groups of the Hopf bundle gives π (S ) ≅ π (S ) and hence 
π (S ) ≅ ℤ. 
 
3.5 Homotopy groups 𝛑𝐢(𝐒𝐧) for 𝐢 > 𝐧 
Computation methods of the groups 𝜋 (𝑆 ) for 𝑖 > 𝑛 are very 
difficult and also most of the groups of this type are nontrivial. 
This difficulity comes from the following senses: 

 Homotopy group can not be defined constructively 
for 𝑖 > 𝑛. 

 We can not make any comment using homology 
groups too, since 𝐻 (𝑆 ) ≅ 0 for 𝑖 > 𝑛. 

 Homotopy groups 𝜋 (𝑆 ) for 𝑖 > 𝑛 can not be 
classified into some specific classes like as 𝜋 (𝑆 )for 
𝑖 ≤ 𝑛. 

6   CONCLUSION 
Computation of homotopy groups of spheres has been 
reviewed with some understandings. From these 
understandings few problems have been mentioned.  This 
study can be extended to determine stable homotopy groups 
of spheres similar to [6], in the application of homotopy 
groups to other fields of knowledge and to find new 
techniques to compute non-trivial homotopy groups of 
sphere/non-countable spaces. 
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